Hydrological Restoration of Rincon Bayou, Nueces Marsh

Paul Montagna, Crystal Chaloupka, Elizabeth DelRosario, Amanda Gordon, Terry Palmer, and Evan Turner

Prelude

- Data presented here originates from many projects funded by BOR, CCC, CBBEP TWDB, and HRI
- This presentation is based on Final Reports to CBBEP and TWDB:
 - Montagna, P.A., C. Chaloupka, E. DelRosario, A. Gordon, and E.L. Turner. 2016. Effects on Benthic Macrofauna from Pumped Flows to Rincon Bayou. Final Report to the Coastal Bend Bays & Estuaries Program for Project # 1617. Harte Research Institute, Texas A&M University-Corpus Christi, Corpus Christi, Texas, 61 pp.
 - Montagna, P.A., L. Adams, C. Chaloupka, E. DelRosario, R.D. Kalke, and E.L. Turner. 2016. Determining Optimal Pumped Flows to Nueces Delta. Final Report to the Texas Water Development Board, Contract # 1548311787. Harte Research Institute, Texas A&M University-Corpus Christi, Corpus Christi, Texas, 75 p.

Nueces River entering Nueces Bay

Nueces Estuary

- Near Corpus Christi, Texas
- Semi-arid climate, water shortages in dry years
- Reverse estuary

Hydrologic Restoration

- > 1996-2000 Nueces Overflow Channel
 - Small bit of water decreased salinity and increased estuary structure and function
- > 2000 Channel closed
- > 2001 Channel opened

Rincon Bayou Pipeline

2009 - City of Corpus Christi completed construction to pass-through the first 3,000 acre-ft (3,700,440 m³) per month from the Calallen Pool to Rincon Bayou

Rincon Pipeline Location

Conversion to a Positive Estuary

- The salinity gradient = upstream (NUDE2) downstream (SALT03)
- Negative estuary condition
 - Salinity at SALT03 < Salinity at NUDE2
- Positive estuary condition
 - Salinity at SALT03 > Salinity at NUDE2

Pumping, Flow, Salinity

- Initially flow went upstream
- Backflow preventer added July 2014
- Washed out July 2015

Long-Term Salinity Change

Previous hypersaline conditions reduced since 2009 when pump began operation

Benthic Epifauna Diversity

Diversity is low because of frequent salinity swings, which cause disturbances

Epifauna Communities

- Push nets used to sample fish and invertebrates
- Salinity gradient from left to right
 - Skipjack at lowest salinity and sheepshead at highest

Benthic Infauna Diversity

- Sediment cores for infauna
- Only 12 infauna species total, compared to 100's in the bay
- Average about 4 per sample date

Infauna Community Structure

Chironomid larvae dominate when salinity is low, and Streblospio benedicti dominate when salinity is high

15

Benthic Infauna Diversity

Turner and Montagna (2016) Max Bin Method

- Diversity peaks with salinity between 4 psu and 10 psu
- Diversity peaks with water depth around 10 cm

Calculate Optimal Salinities

Turner and Montagna (2016) Max Bin Method IN PRESS

Metric	Chironomidae larvae	Streblospio bendicti
Abundance	1.3 psu, 9 cm	13.5 psu, 12 cm
Biomass	1.8 psu, 8 cm	14.1 psu, 12 cm

Modelling Benthic Communities

- Predicting species responses from physical changes in Rincon Bayou
- 65 % to 81 % accuracy

Calculate Flow Needed to Maintain Salinity

Optimal Pumping

- Pumping controls salinity and water depth
- Based on indicators, 0.41 m³/s (29 ac-ft/day) would maintain optimal salinity and depth for bioindicators

Conclusions

- Rincon Bayou is a disturbed environment exhibiting low diversity and constant community state shifts with wet and dry periods
- While hydrological restoration has helped Rincon Bayou, more changes are necessary
 - Inflows should be a trickle, not a flood
 - Releases should be continuous and not haphazard
 - Specifically:
 - Only one pump should be used at a time, which will take about 24 days (at 126 ac-ft/d) to deliver 3,000 ac-ft/month
 - Releases should not be timed for end of month because that requires 3 pumps over a short time period making floods worse
 - Releases should not be dependent on pass-through requirements because you need them most during dry periods

Acknowledgements

Coastal Bend Bays & Estuaries Program

Texas Water Development Board

Harte Research Institute

Too many colleagues, students, postdocs, and technicians to mention since 1994

Questions?

